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THE TASK: GENERATIVE MODELING

“Generative Modeling is the use of Artificial Intelligence, statistics and probability in applications to

produce a representation or abstraction of observed phenomena or target variables that can be
calculated from observations.”
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Train the model using ‘samples’ generate a ‘new’ catimage




AVANTUM COMPVUTERS AS SAMPLERS

Classical - Neural Network or other
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Quantum - Parameterised Quantum
Circuit (PQC) arXiv:1906.07682



https://arxiv.org/abs/1906.07682

AVANTUM COMPVUTERS AS SAMPLERS

e Quantum Inspired Training of Boltzmann Machines arXiv:1507.02642
e Quantum Boltzmann Machine Phys. Rev. X 8, 021050
o Using annealing to prepare thermal state to sample from.
e Gate based Quantum Boltzmann Machine arXiv:1712.05304
o Use QAOA to prepare approximate thermal state.
e Born Machine npj QI 5:45, Phys. Rev. A 98, 062324, ...
o A‘new’ model - generates statistics directly from Born rule of Quantum Mechanics



https://arxiv.org/abs/1507.02642
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021050
https://arxiv.org/abs/1712.05304
https://www.nature.com/articles/s41534-019-0157-8
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.062324
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IstnG BOrN MACHINE
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GRADIENT BASED TRAINING
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GRADIENT BASED TRAINING

2 - Evaluate loss & gradient

Lp(pe(x),7(y))
OgLp
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GRADIENT BASED TRAINING

3 - Update parameters by

gradient based descent

2 - Evaluate loss & gradient

0) | H
0) | H
0) | H

U, ()

Uf<F17 Ala Z1)

Uf(F27 AZ; E2)

N D

Lp(pe(x),7(y))
OgLp

-

9 x:mlmz...mnE{O,l}"

~ po(x) = |(x|vg)|’

Ln 1- Sample from model.



CHOOSING A COST FUNCTION

Computing the loss function is a means of checking how well we are doing - comparing the data and the
instantaneous model distributions.
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How do we compare two probability distributions? - This is hard.
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CHOOSING A COST FUNCTION

We need a loss function which is ideally:

e Easily computable (in terms of sample + computational complexity)
e Relatively ‘powerful’ (should be sensitive to differences in the distributions)



THE BENCHMARK — TOTAL VARIATION DISTANCE

Model Data

TV(po,m) = 5 Bo(z) — ¥(z)

Why? It’s the notion that typically goes with quantum supremacy experiments:

e |QP: Phys. Rev. Lett. 117, 080501- Assume a conjecture about the hardness of computing the Ising
partition function. If it is possible to classically sample from the output probability distribution of any
IQP circuit C in polynomial time, up to an error of 1/384 in TV, then there is a BPP*NP algorithm to
solve any problem in P*#P . Hence the Polynomial Hierarchy would collapse to its third level.



https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.080501
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THE BENCHMARK — TOTAL VARIATION DISTANCE

Model Data

TV(po,m) = 4 5 Bo(z) — ¥(z)
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.080501

PREVIOVS TRAINING — MAXIMUM MEAN
R‘?\&%%ﬁéggxas 062324, Gretton et.al.: JMLR 13 (2012) 723-773

Lumvp (pe, ) = E (k(x,y)) + XIEW(K’(X’ y)) — 2E (k(x,y))

X~Pg X~Pg
Y~Dg y~m y~m


https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.062324
http://www.jmlr.org/papers/volume13/gretton12a/gretton12a.pdf

PREVIOUS TRAINING — MAXIMUM MEAN
DISCREPANCY

The MMD is very efficient to compute. It has quadratic sample complexity independent of the size of the
underlying space arXiv:0901.2698 :

vV Lump — \/EAMMD =0 (ﬁ)

But, it lower bounds Total Variation: On Choosing and Bounding Probability Metrics

TV (p,q) > +/Lwmwmo (p, q)

So, minimising MMD, does not necessarily do a good job of minimising TV. Can we minimise an efficient
upper bound instead?



https://arxiv.org/abs/0901.2698
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2002.tb00178.x

WASSERSTEIN + OPTIMAL TRANSPORT?

The Wasserstein metric is related to Optimal Transport (Villani, 2009: Optimal transport, old and new. ) - a
way to compare distributions by determining how to ‘transport’ one into the other

OT®(pe, ™) = min Z (%, y)U(x,y)

OT matrix GO UEU(p(,,?T) (x y)exxy
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COMPUTATION + POWER

OT is hard to compute though arXiv:0901.2698...

0T —0T| =0 (-
Mm

But it does upper bound TV: On Choosing and

Bounding Probability Metrics

TV(p,q) < OT%(p, q)



https://arxiv.org/abs/0901.2698
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2002.tb00178.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2002.tb00178.x

COMPUTATION + POWER

OT is hard to compute though arXiv:0901.2698...

0T —0T| =0 (-
Ml/n
But it does upper bound TV: On Choosing and
Bounding Probability Metrics

TV(p,q) < OT(p, q)

v Lmvp — EMMD‘ = (’)(

al-

TV (p,q) > +/Lwwmp (P, q)


https://arxiv.org/abs/0901.2698
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2002.tb00178.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2002.tb00178.x

SINKHORN DIVERGENCE

Let’s add a regularisation term to the optimal transport distance... While we’re at it, let’s also add symmetric
terms to remove bias... => Sinkhorn Divergence Entropy 2017, 19(2), 47, arXiv:1810.08278, arXiv:1706.00292

OT:(pg,m) := min >, e(x,y)U(x,y) + eKL(U|pg @ )
UcU(pg,m) (x,y)cX? x Y?

SHp (Pe, ) == OT¢(pg, ) — 30T¢(pe,pe) — 3OTc(m, )

Regularised by the entropy term (KL divergence). Sinkhorn divergence interpolates between MMD and
unregularised optimal transport (as a function of regulariser, €) - gradient has same form as MMD.



https://www.mdpi.com/1099-4300/19/2/47/htm
https://arxiv.org/abs/1810.08278
https://arxiv.org/abs/1706.00292

SINKHORN DIVERGENCE

Can be efficient arXiv:1810.02733

O(n? 2 O(n?)
IB:"|‘CSI-(ID) o LSHD ‘ = 0 (ﬁ)

O n2 AO(’I’L2) n
I‘CSI'(lD) — ‘CSHD | — O (WlOg(l/(S)l/z) (With prob. 1-8)

Can also be powerful:

TV(pe,m) < OT" (pg, ) < OTfimz\

Un-regularised Optimal transport ./ Regularised Optimal transport


https://arxiv.org/abs/1810.02733

Il Data
0.175{ HEE MMD, on Aspen-4-4Q-A
MMD, on Aspen-4-4Q-A-qvm
‘ ” K“ og” w EE Sinkhorn, on Aspen-4-4Q-A
[
0.150 I Sinkhorn, on Aspen-4-4Q-A-qvm
0.125
0.45 1
—— MNMD, on Aspen-4-4Q-A. 0.100
0.40 —+— MNMD, on Aspen-4-4Q-A-qvm.
. —e— Sinkhorn, on Aspen-4-4Q-A. 0.075
0.351 —e— Sinkhorn, on Aspen-4-4Q-A-qvm.
09 0.050
0.30 0.025
0.251 0.000
D N S ~ D Iy S Ry D N S ~ D N S ~
S D ~ N S S ~ ~ S D N N S ) it By
S § § § &§ % & & F S5 2 8 I T X5
0.20 1
0.15

0 20 40 60 80 100



The Born
Supremacy:
Quantum Advantage
and Training of an
Ising Born Machine



e 251,
Slprerzuoy.
Quantum Advantage
Aoty Heflrlav o,

SIS0 Wha s e



QUANTUM ADVANTAGE OF TRAINING

“Quantum supremacy is the potential ability of quantum computing devices to solve problems that classical
computers practically cannot.” John Preskill

The simplest example of such a problem is a sampling problem (or at least that we have evidence for)
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QUANTUM ADVANTAGE OF TRAINING

Part 1 - Hardness of Simulation:

e Hardness of simulating the IBM (Ising Born machine) can be retained through training by enforcing
parameter updates in a particular way. Parameter Space 6

gradient descent steps

BUT: This doesn’t say the model is able to
actually outperform all classical algorithms in
a learning task - Hardness of simulation does
not imply usefulness!



QUANTUM ADVANTAGE OF TRAINING

Part 2 - Advantage in learning (??):

e Can we find examples which can be reached by quantum models, but cannot by any classical

dels?
MOAEIS? Parameter Space, 6

@
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SUPREMACY

Supremacy null hypothesis:

The output of this computation was arrived at by a classical computer



THE ORDER OF DERINITIONS

’_______‘

/
Learning

|
I
l
I
l
I
l
I
l
\

OENERATOR

-_eem e e e e Em =m P

Quantum Learning
Supremacy!!



OENERATOR

\ Collection of probability distributions

bits € {o,1}r<n>—>@—> o D

Samples from
distribution in collection

Generator



OENERATOR

An ‘Approximate Generator’, adapted from Kearns '94 - On the learnability of discrete distributions:

N —z~ D', d(D,D) <e



https://www.cis.upenn.edu/~mkearns/papers/dist.pdf

LearNninG

-D E D Learning algorithm

Generator for distribution D’ which is close to D
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AVANTUM LEARNING SUPREMACY
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CoNCLVSIONS

e We defined the Ising Born Machine.

e We used new gradient training methods - Sinkhorn Divergence - which is ‘stronger’ than the MMD,
but efficiently computable.
e Quantum Advantage - By connecting to IQP and QAOA, the model is hard to sample from and can

remain hard during training. We defined a framework for a provable advantage for generative
modelling, potentially in the near term.
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ADDITIONAL PLOT
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