On-Chip Verified Measurement Based Quantum Computation with an Ion-Trap QPU

QCTiP 2025 - Dan Mills, Cica Gustiani, Dominik Leichtle, Jonathan Miller, Ross Grassie, Elham Kashefi <u>arXiv:2410.24133</u>

On-Chip Verified Measurement Based Quantum Computation with an Ion-Trap QPU

QCTiP 2025 - Dan Mills, Cica Gustiani, Dominik Leichtle, Jonathan Miller, Ross Grassie, Elham Kashefi <u>arXiv:2410.24133</u> Building confidence in the outputs of quantum computers

Randomised Benchmarking

Random Circuit Sampling

VUBQC

VUBQC

On-Chip Verified Measurement Based Quantum Computation with an Ion-Trap QPU

Measurement Based Quantum Computation

Verified Measurement Based Quantum Computation

On-Chip Verified Measurement Based Quantum Computation

On-Chip Verified Measurement Based Quantum Computation with an Ion-Trap QPU

Conclusions

The three pillars of quantum advantage: application, error correction, and verification.

More experiments and formalisation:

On-Chip Verified Measurement Based Quantum Computation with an Ion-Trap QPU -> https://arxiv.org/abs/2410.24133

