Verification of NISQ Devices

From Benchmarking to Protocol Verification

Introduction

NISQ

- Few qubits (100-200) even less
- Limited architecture
- Lots of Noise (I mean really... wow)
 - Verification compensates for lack of error correction
- Verification of sampling
- No fault tolerance and in some cases no error correction

Verification - What do they want?

Physicists

- Certify the outcome of their simulation (ground state/noise)
- Accurately determine physical properties (entanglement/phase estimation/purity)
- Trust in device as "good" quantum simulator in many situations (benchmarks)

Industry

- Trust in quantum computer/simulator when involving sensitive/public data
- Assurance that quantum computer/simulator is doing what it should be efficiency/speed-up?

Computer scientists

- Verify output of quantum computer is correct (classically intractable)
- Security measures for all situations (best to worst case scenario)
- A bound on trust in your NISQ or UQ device

The public

- "So, if I use a quantum computer to google something it will give me the results even faster and they'll be better??"
- Are my transactions secure?
- Can we have better drugs and are they safe?

Randomized Benchmarking

What Do You Need And What Can You Get

Requirements

Any amount of qubits (theoretically)

Set of unitaries/gates that form an exact or approximate unitary t-design from which to sample from.

To efficiently run a number of sequence lengths

Inversion of gates or known basis to measure for final state

Returns

A measure of the average performance of a quantum hardware when running a long quantum information process (partial noise characterisation)

Average error rate of a gateset on your hardware

A measure of a gates performance as a part of a process rather than individually

Incorporates errors from state preparation and measurement

Fundamentals

Twirling

 $egin{aligned} \overline{\Lambda}(
ho) &= \int_{U(D)} d\mu(U) U \circ \Lambda \circ U^\dagger(
ho) \ &= \int_{U(D)} d\mu(U) U \Lambda(U^\dagger
ho U) U^\dagger \end{aligned}$

If $d\mu$ is the Haar distribution then the twirled channel on ρ is a depolarising channel

Average Λ under the composition $U \circ \Lambda \circ U^{\dagger}$ for unitary operations $U(\rho) = U\rho U^{\dagger}$ chosen according to probability distribution $d\mu$

Depolarising Channel $\overline{\Lambda}(\rho) = p\rho + (1-p)\frac{1}{D}$ Strength of channel

Fundamentals

Twirling

 $egin{aligned} \overline{\Lambda}(
ho) &= \int_{U(D)} d\mu(U) U \circ \Lambda \circ U^\dagger(
ho) \ &= \int_{U(D)} d\mu(U) U \Lambda(U^\dagger
ho U) U^\dagger \end{aligned}$

Unitary t-design If $d\mu$ is the Haar distribution then the twirled channel on ρ is a depolarising channel

Average Λ under the composition $U \circ \Lambda \circ U^{\dagger}$ for unitary operations $U(\rho) = U\rho U^{\dagger}$ chosen according to probability distribution $d\mu$

Depolarising Channel $\overline{\Lambda}(\rho) = p\rho + (1-p)\frac{1}{D}$ Strength of channel

Fidelity

$egin{aligned} F(\Lambda_U,U) &= F(U|\psi angle\langle\psi|U^\dagger,\Lambda_U(|\psi angle\langle\psi|))\ F(\Lambda_U,U) &= F(\Lambda_{U,e},I) &\longrightarrow F(\int_{Haar}\Lambda_{U,e},I) \end{aligned}$

 $egin{aligned} \Lambda_U(X) &= \sum_i A_i X A_i^\dagger \ \Lambda_U(X) &= \sum_i (A_i U^\dagger) U X U^\dagger (U A_i^\dagger) \ \Lambda_{U,e} &= \sum_i A_i U^\dagger \otimes U A_i^\dagger \end{aligned}$

 $\Lambda_U = \Lambda_{U,e} \circ U$

Fidelity $F(\Lambda_U,U)=F(U|\psi angle\langle\psi|U^\dagger,\Lambda_U(|\psi angle\langle\psi|))$ $F(\Lambda_U, U) = F(\Lambda_{U,e}, I) \longrightarrow F(\int_{Haar} \Lambda_{U,e}, I)$ $\int_U d\mu(U) F(\Lambda_U, U) = \int_U d\mu(U) F(\Lambda_{U,e}, I)$ $(1-rac{D-1}{D})+rac{D-1}{D}(1-\overline{p_d})$ $\blacktriangleright \ \Lambda_{U.e} = \Lambda_U \circ U^{-1}$ $\Lambda_U = \Lambda_{U,e} \circ U$ _____

$\begin{array}{l} \text{Method} \\ \rho = |\psi\rangle\langle\psi| & \\ & M = \{E,1-E\} \text{ Average survival} \\ \Lambda_{UTot}^{-1} \Lambda_{U_m} \dots \Lambda_{U_1} & Tr(ES_m(\rho)) \end{array}$

- Average each survival probability over number of sequences sampled at that length: average survival probability over all possible sequences at that length
- Do this for varying sequences where all unitaries are sampled from a unitary t-design. $P_m = A + (B + Cm)p^m$ $r = rac{D-1}{D}(1-p)$

Verified/Secure?

Random processes not specific algorithms - correct outcome of computation **not verified** with this technique

The "server" and "verifier" know the initial state of the system, the random processes run on the device and the measured output - **not secure**

If your specific algorithm were hidden in the random processes somehow, could we get a measure of the average error rate for that process on the hardware without the "server" knowing what the algorithm was?

Programmable analog quantum simulators

Tunable

Reproducible

For:

Problems that require being able to run a whole class of hamiltonians in a reproducible way.

Way to test/certify such a simulator?

In the analog setting - RB method

In the analog setting - RB method

Same as standard RB but :

- Unitaries are time-evolution operators sampled from set generated from native gates of system

 Each unitary is systematically inverted (for now) rather than one single deterministic inversion operator

Generating a unitary t-design from Hamiltonian

Non trivial problem

Generate disorder around static Hamiltonian - break symmetry enough to generate a unitary t-design - (disorder potential + interaction term)

- Product of those generated will eventually span unitary space

 For 2-design can compare second moment of Haar measure with second moment of unitaries generated : basically compare eigenvalues - should be two max with 1 and 0's everywhere else

Verification with randomized benchmarking?

- Can we get an average error rate for a specific quantum algorithm?
- Need it to appear random, or be hidden within a random sequence

 Build unitary t-design around specific algorithm?

Embed specific algorithm sequence within sequence of random unitaries from unitary t-design.

Quantum Benchmark (company)

Claims

"The <u>True-Q(™) Validation</u> software system *accurately* validates the Quantum Capacity of *any* quantum hardware platform to execute any quantum circuit for *any* user-supplied problem or application."

"Validates the capacity of *any* quantum hardware platform to perform *any* user-supplied algorithm to *any* user-specified precision"

"<u>True-Q(™) Design</u> is a scalable solution for optimizing hardware design and quantum computing performance."

How do they achieve this?

- **Randomized Benchmarking:** accurate and precise error characterization of elementary quantum gates
- *Cycle Benchmarking:* scalable error characterization of arbitrary parallelized gate cycle and universal (polynomial-depth) quantum circuits
- **Scalable Error Reconstruction:** detailed error reconstruction across the quantum processor to find error correlations and optimize hardware design and performance of quantum error correcting codes
- **Randomized Compiling:** efficient run-time error suppression for arbitrary applications
- *Quantum Capacity:* high-precision performance validation for arbitrary applications

Hypothesis Testing

The Setting

Superiority Null Hypothesis

The set of samples which I have in my possession were drawn from a distribution produced by a classical computer in polynomial time

Unlike traditional experiments this amounts to the *nonexistence* of something. Hence we need some theoretical tools to guide us

Boson Sampling

Constant-Depth Quantum Circuits

extended clifford circuits

one-clean-qubit

Ball Permutations

One Possible Option

Some Components of the Hypothesis Test to Extract

- 1. A reason Chad must use a quantum computer
 - Hard computational problem
- 2. Property of the outcome, which is "highly correlated" to the outcome, to check
 - The small hidden problem should be solvable and indicative of the larger problem
- 3. A backdoor that helps us check property
 - \circ $\,$ A smaller problem should be hard to uncover
- 4. Means to implement on NISQ devices
 - Let's figure something out for IQP... Why not?

An Example

An Example

An Example

It Meets The Requirements?

1. A reason Chad must use a quantum computer

- It looks like a big IQP computation to him
- Cannot reproduce classically as hiding is good
- 2. Property of the outcome, which is "highly correlated" to the outcome, to check
 - \circ The property of the hidden graph is fixed so can be checked
 - \circ Its embedding in the larger graph makes it highly correlated
- 3. A backdoor that helps us check property
 - You know where the small problem is!
- 4. Means to implement on NISQ devices
 - IQP is easier to implement than BQP

It Meets The Requirements?

1. A reason Chad must use a quantum computer

- It looks like a big IQP computation to him
- Cannot reproduce classically as hiding is good
- Property of the outcome, which is "highly correlated" to the outcome, to check 2.
 - The property of the hidden graph is fixed so can be checked
 - Its embedding in the larger graph makes it highly correlated
- A back toor that helps us check property
 Ye i know where the small problem is! 3.
- Means to implement on NISQ devices 4.
 - IQP is easier to implement than BQP

Random Circuit

For example:

1

2

5

6

8

Cycle of Hadamard gates For d clock cycles: Apply CZs If no CZ applied If no random gate acted yet Apply T Else Apply gate different from previous

•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

Random Circuit

For example:

1

2

8

Cycle of Hadamard gates For d clock cycles: Apply CZs If no CZ applied If no random gate acted yet Apply T Else Apply gate different from previous

Random Circuit

For example:

1

2

4 5

6

8

Cycle of Hadamard gates For d clock cycles: Apply CZs If no CZ applied If no random gate acted yet Apply T Else Apply gate different from previous

Heavy Output Generation

Given as input a random quantum circuit C, generate output strings x_1, ..., x_k at least ²/₃ fraction of which have greater than median probability in C's output distribution.

Relational problem which can be verified in classical exponential time by calculating ideal probabilities

Under what assumption is HOG classical hard

Quantum Threshold assumption:

There is no polynomial time classical algorithm that takes a description of a random quantum circuit *C*, and that guesses whether $|<0^{n}|C|0^{n}>|^{2}$ is greater or less than the median of the values of $|<0^{n}|C|x>|^{2}$, with success probability at least $\frac{1}{2} + \Omega(\frac{1}{2}^{n})$ over the choice of *C*.

Quantum Threshold Assumption

- There is simple reduction
 - HOG is not hard \Rightarrow there exists polynomial-time algorithm to find high probability outputs \Rightarrow one can use this algorithm to guess $|\langle 0^n | C | 0^n \rangle|^2 \Rightarrow$ QUATH does not hold
- Despite similarity between HOG and QUATH, importantly it is not a relational problem and does not refer to sampling.
- Justified through rather flimsy reasoning

How Does This Relate to Our Comments From Before

- 1. A reason Chad must use a quantum computer
 - \circ ~ If QUATH hold then he'll have to
- 2. Property of the outcome, which is "highly correlated" to the outcome, to check
 - Did he meet the conditions of the HOG problem?
- 3. What price did I pay for removing the backdoor that helps us check property
 - \circ \quad Actually it takes exponential time to check this... You just have to brute force it
- 4. Means to implement on NISQ devices
 - Random circuits are *THE* NISQ device ... google it

Cross Entropy Difference

Measure quality as the difference from uniform classical sampler $\Delta H\left(p_A
ight) = \sum_j \left(rac{1}{N} - p_A\left(x_j|U
ight)
ight) log rac{1}{p_U(x_j)}$

- Unity for ideal implementation
 - Output entropy equal to Porter-Thomas distribution
- Zero for uniform distribution

Achiever supremacy in range:

A Classical Computer Cannot Pass a Cross-Entropy Test?

Approximating cross entropy difference (probably) requires explicitly calculating probabilities

- 1. This means C = 0 for large circuit
- 2. Also means we cannot measure cross entropy difference for large circuits

whispers we can probably just extrapolate *whispers*

It is argued that approximating the probabilities is hard and a weaker assumption than QUATH

How Does This Relate to Our Comments From Before

- 1. A reason Chad must use a quantum computer
 - Producing Porter-Thomas distributions requires a quantum computer
- 2. Property of the outcome, which is "highly correlated" to the outcome, to check
 - Can cross-entropy benchmark it
- 3. What price did I pay for removing the backdoor that helps us check property
 - Actually it takes exponential time to check this... You just have to brute force it
- 4. Means to implement on NISQ devices
 - Random circuits are *THE* NISQ device ... google it

How Does This Relate to Our Comments From Before

- 1. A reason Chad must use a quantum computer
 - Producing Potter-Thomas distributions requires a quantum computer
- 2. Property of the processory of the processory of the cutcome, to check
 - Can cross-ent opy benchmark it
- 3. What price did ph/lo: remogng the we'll or that helps us check property
 - Actually it takes exponential time to check this... You just have to brute free it
- 4. Means to implement on NISQ devices
 - Random circuits are *THE* NISQ device ... google it

What Have We Learned

- Hypothesis tests are used to prove "quantumness"
- They require a property which should be checked that is "highly correlated" to the hard problem being implemented
- This highly correlated property is sort of the key here

What Have We Learned

- Hypothesis tests are used to prove "quantumness"
- They require a property which should be checked that is "highly correlated" to the hard problem being implemented
- This highly correlated property is sort of the key here

Future Work

- Does not seem to be a reason to restrict to Random Circuits
 - Or maybe...
 - Random circuits are very flexible
- Can we use these hypothesis tests as a kind of "*meaningful*" verification
- What do hypothesis test teach us about limits of classical computers
 - Where will we see superiority
- Can the IQP random circuits be restricted to square lattices nicely
 - Can we combine runtime of IQP into Random circuit NISQness

Building Trust For Quantum States

Quantum State Tomography

• Reconstructing the density matrix of a quantum state (output of an experiment)

• Many measurements and various measurement settings

• Scales exponentially in the number of subsystems (accounting for all correlations)

• *Independently and Identically Distributed* (IID) assumption

Quantum State Certification

Target state ρ , direct fidelity estimation

$$1 - \sqrt{F(
ho, \sigma)} \leq ext{Tr}(|
ho - \sigma|) \leq \sqrt{1 - F(
ho, \sigma)}$$

IID assumption:
$$\sigma^N=\sigma^{\otimes N}$$

Quantum State Verification

Target state ρ ,

 $F(
ho,\sigma) \geq 1-\epsilon$ with probability greater than $1-\delta$

where $N = poly(rac{1}{\epsilon}, rac{1}{\delta})$

No IID assumption!

Quantum State Verification Beyond Tomography

Target state ρ ,

$$F(
ho^{\otimes m},\sigma^m) \geq 1-\epsilon~$$
 with probability greater than $~1-\delta$

where $N = poly(m, rac{1}{\epsilon}, rac{1}{\delta})$

No IID assumption!

What About CV?

Infinite Fock basis: $\{ |n
angle \}_{n\in\mathbb{N}}$

$$ho = \sum_{k,l=0}^\infty
ho_{kl} |k
angle \langle l|$$

→ We are not going to verify all of it: energy cutoff

$$hopprox \sum_{k,l=0}^E
ho_{kl} |k
angle \langle l|$$

CV Quantum State Tomography

• Finite support over the Fock basis assumption

• IID assumption

Estimating σ_{kl} for $k,l\leq E$

CV Quantum State Certification

• Energy test

• IID assumption

Estimating $F(
ho,\sigma)$ or $\mathrm{Tr}(A\sigma)$ efficiently

CV Quantum State Verification

• Refined energy test

• No assumptions

Estimating $F(
ho^{\otimes m},\sigma^m)$ efficiently

(Proof using De Finetti theorem)

Outlook

• Extending crypto techniques to CV (no obvious twirling lemma)

• More flexible definitions of security: different measures, robust definitions

• Tailored protocols: trading efficiency and security

Thanks!