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Quantum Superiority



Superiority Hypothesis

The set of samples I have in my posetion were drawn

from a distribution produced by a classical computer 1 2

1In a reasonable amount of time
2Disproving this null hypothesis would demonstrate quantum superiority [1]
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A Recipe

Ingredients:

• A computational problem 3

• A reason to believe there is a separation between the classical

and quantum runtime

• A method of verifying the outcome

Cooking time: polynomial

Serves: you right extended Church-Turing thesis

3Not necessarily of practical interest
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Factoring [2] as an Instance of our Recipe

• A computational problem:

• Factoring

• A reason to believe there is a separation between the classical
and quantum runtime

• Well... we’ve tried our best for a while now

• A method of verifying the outcome

• We can multiply the factors
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Superiority by Factoring Soon Becomes Daunting [3]

Factoring4

4Of a 2048 bit number, which is basically impossible for a classcal computer
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Superiority by Factoring Soon Becomes Daunting [3]

!?!?

Factoring4

4,000 qubits

109 gates

Fault tollerance

4Of a 2048 bit number, which is basically impossible for a classcal computer
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Superiority by Factoring Soon Becomes Daunting [3]

Factoring4

4,000 qubits

109 gates

Fault tollerance

Architectural restraints

4Of a 2048 bit number, which is basically impossible for a classcal computer
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A New Ingrediant

Ingredients:

• A computational problem 5

• A reason to believe there is a separation between the classical

and quantum runtime

• A method of verifying the outcome

• An implementation on a near-term device

5Not necessarily of practical interest
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Simpler Quantum Computers



Boson Sampling [4]

Linear optical network:

m

n

Photons are counted at the end
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Boson Sampling Chalenges

• Randomised single photon source has inherently poor scaling

• Scattershot boson sampling?

• Lossy systems

• Some way to go

• Can implement ∼ 5 photons, ∼ 10 modes

• Can simulate ∼ 30 photons ... on a laptop [5]
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Instantaneous Quantum Polytime [6, 7]

Commuting gates:

=
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Random Quantum Circuits [8]

Alternating entanglement patterns and random gates:
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Hardness Results



Polynomial Hierarchy

• f (x) ∈ NP =⇒ f (x) = ∨yg (x , y)

• kth level of PH has k alternating quantuifers

• f (x) = ∨y1 ∧y2 ... ∧yk g (x , y1, ..., yk)

• It is conjectured kth and k + 1th level of PH are not equal

• If it is then there is a colapse to k th level - “ it’s the k th level

all the way down”
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Post-Selection

• A computation takes input strings x and outputs strings y

and z

• we condition on z and output y

• Allowing post selection on exponentially unlikely outcomes is

very powerful
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What is the Layout?

k = 1

k = 2

k = 3

...
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What is the Layout?

k = 1

k = 2

k = 3

PPP [9]

...

PostBPP [10]

PostBQP = PP [11]
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What if PostBQP = PostBPP?

k = 1

k = 2

k = 3

PPostBPP ≡ k = 3

...

PostBPP [10]

PostBQP = PP [11]
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Problem with Complexity Theory

• Asymptotic complexity results tell us little about near term

implementations!

• We would prefer a more fine grained complexity complexity like

”this computation takes time 2n on n qubits” [12]

• Worst case results teach us nothing about which computation

implements to use

• We have some average case hardness results based on stronger

conjectures

• BPP = BQP ; PostBQP = PostBPP
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Instantaneous Quantum Polytime [6, 7]

Commuting gates:

=
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IQP Superiority [13]

|α〉 U H V VHU |α〉

|α〉 U H 〈0|

|0〉 H V VHU |α〉
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Multiplicative vs Additive Error

(1− ε) q (0n) ≤ p (0n) ≤ (1 + ε) q (0n)

vs∑
z |p (z)− q (z)| ≤ ε
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IQP Additive Superiority [14]

• For two classes of problems, a classical sampler, acurate up to

good additive error in the worst case, must be acurate in

multiplicative error in the average case.

• Can use Stockmeyer to estimate individual output

probabilities up to small multiplicatie error.

• True because of anticoncentration 6

• This gives an algorithm for computing multiplicative

approximation to large fraction of class.

• This causes a collapse of PH , assuming some conjectures

about the two classes. 7

6One advantage if IQP is that it is simpler to show anticoncentration results.
7Analagouse to [4] but can prove anticoncentration
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IQP Superiority

• Arbitrarily small constant noise on each qubit at the end of

IQP circuit makes [15] easy up to additive error.
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Random Circuit Superiority: 3 Main Arguments

1. No known simulation using reasonable amount of memory

2. IQP-esque complexity results giving asymptotic hardness

3. Circuits have properties we expect of hard distributions
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Intuative Initial Arguments

Close to Porter-Thomas =⇒ Behaves like chaotic system

=⇒ Small perturbation = large divergence

=⇒ Must store full state

=⇒ Hard to simulate
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Verification



Verification

Options:

1. Direct certification

2. Classically simulate small instances

3. Statistical test of some properties we expect.
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Verification Using HOG [16]

Problem
HOG - Heavey Output Generation

Given as input a random quantum circuit C , generate output

strings x1, ..., xk at least a 2
3 fraction of which have greater than

median probability in C’s output distribution.

Conjecture
QUATH - QUantum THreshold assumption

There is no polynomial-time classical algorithm that takes as input

a description of a random quantum circuit C , and which guesses

whether |〈0n|C |0n〉|2 is greater than or less than the median of all

2n of the |〈0n|C |x〉|2
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Verification of Random Circuits Using Entropy Benchmarking

• Measures closeness of output to perfect circuit

• Takes exponential time classically

• Maybe that’s okay?
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Instantaneous Quantum Polytime Machine [6]

Commuting gates:

=

In particular:

exp iθ
⊗
i :qi=1

Xi

where q ∈ {0, 1}np , θ ∈ [0, 2π].

26



Instantaneous Quantum Polytime Machine [6]

exp iθ
⊗
i :qi=1

Xi

An IQP program may consist of many of these gates, and so many

different q. Hence we may represent the whole computation by, for

example:

Q =

(
1 0 1

0 1 0

)
where, in this case, we have two gates defined by q = (101) and

q = (010).

The input is |0np〉 and the output is the resulting state measured in

the computational basis.
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IQP in MBQC

a1 a2

p1 p2 p3

Q =

(
1 0 1

0 1 0

)
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Bridge and Break [17]

|0〉 or |1〉

cZ1,2cZ2,3 |0/1〉 ⊗ |φ〉
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Bridge and Break [17]

|0〉 or |1〉

|+〉 or |−〉
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Bridge and Break [17]

|0〉 or |1〉

|+〉 or |−〉

S
f (+/−,s)
1 S

f (+/−,s)
3 Z1,3 |φ〉
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IQP By Bridge and Break

a1 a2

p1 p2 p3
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Hypothesis Test

Bias of a random variable, X ∈ {0, 1}np , in a direction s ∈ {0, 1}np .

P
(
X · sT = 0

)
= Bias (X , s)

Can be easily calculated, for some special IQP computations

(depending on s), if one knows s [6].
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Hypothesis Test

a1 a2

p1 p2 p3 p4
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Hypothesis Test

a1 a2
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Bias (X , s1) = p
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Hypothesis Test
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Hypothesis Test

a1 a2

p1 p2 p3 p4
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32



Hypothesis Test

a1 a2

p1 p2 p3 p4

32



Hypothesis Test

a1 a2

p1 p2 p3 p4

32



Hypothesis Test
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p1 p2 p3 p4
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The Hypothesis Test Outline

Three conditions for a successful hypothesis test:

• The Server must complete a hard computations

• Computation bias calculation is hard

• The Client knows a secret property allowing them to check
the outcome

• The Client knows the direction s

• The Server hides the secret property

• Using blind IQP
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Conclusion



Conclusion

• VERIFICATION OF SOME PROPERTY (BUT NOT THE

WHOLE THING) IS INTERESTING!
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