Verification of NISQ Devices

 $\bullet \bullet \bullet$

From Benchmarking to Protocol Verification QuHackEd 2019

What are NISQ Devices?

Noisy Intermediate Scale Quantum Devices

- Few qubits: 100-200
- Limited architecture
 - Cannot always directly connect all qubits
- Lots of Noise (I mean really... wow)
- No fault tolerance
 - Error correction requires significantly more qubits

Noisy Intermediate Scale Quantum Devices

For example...

IBM-Q 5 Tenerife

ibmq_5_tenerife - ibmqx4 v1.0.0

×

IBM-Q 16 Melbourne

Rigetti Aspen-4-16Q-A

16 QUBITS Aspen-4-16Q-A			
Т1	25.24 µs	fRO	93.43%
T2	19.89 µs	fCZ	90.81% ± 0.24%
f1QRB	82.19%	fBellState	91.08%
fActiveReset	95.41%		

Qubit Counter

www.qubitcounter.com

What Would We Like From Verification?

In An Ideal World

- Is the computation being performed on the quantum computer the one I want?
- Is the state my quantum computer is preparing the one I wanted?

In The Real World

- If you want to check that ANY computation is being performed correctly, you need A LOT of qubits
- To be totally sure, you might need a small quantum computer of your own

What Can We Expect From Verification?

You Might Just About Get...

- Is my device doing anything quantum at all?
- Is the noise level reasonable?
- Is the distribution of outputs close to what it was meant to be?

Hypothesis Testing Is my device doing anything quantum at all?

The Setting

Superiority Null Hypothesis

The set of samples which I have in my possession were drawn from a distribution produced by a classical computer in polynomial time

Superiority Null Hypothesis

The set of samples which I have in my possession were drawn from a distribution produced by a classical computer in polynomial time

If not, then they must have been implemented by a quantum computer

A Proposal

What Can We Recover From This Failure

Some Components of the Hypothesis Test to Extract

- 1. A reason Chad must use a quantum computer
 - Hard computational problem
- 2. Property of the outcome, which is "highly correlated" to the outcome, to check
 - \circ The small hidden problem should be solvable and indicative of the larger problem
- 3. A backdoor that helps us check property
 - \circ $\,$ A smaller problem should be hard to uncover
- 4. Means to implement on NISQ devices
 - Let's figure something out for IQP... Why not?

IQP as **NISQ Device**

Circuit Model IQP

Circuit Model IQP

$$\exp\Bigl\{i hetaigotimes_{i:q_i=1}X_i\Bigr\}, q\in\{0,1\}^n, heta\in[0,1]$$

Usually Not True For Quantum Circuits

"Output qubits"

"Gate qubits"

 \bullet \bullet \bullet \bullet \bullet $|+\rangle$

"Output qubits"

"Gate qubits"

 $cZ \dots cZ \bigotimes \ket{+}$

"Output qubits"

"Gate qubits"

Measurements and classically controlled corrections

"Output qubits"

Measurements

 $(\widehat{\bigcirc})$

Advantages And Disadvantages

Advantages:

- Can be implemented on NISQ technology
- Believed not be reproducible by a classical computer

Disadvantages:

• Not capable of implementing all computations

IQP Hypothesis Test

It Meets The Requirements?

1. A reason Chad must use a quantum computer

- It looks like a big IQP computation to him
- Cannot reproduce classically as hiding is good
- 2. Property of the outcome, which is "highly correlated" to the outcome, to check
 - The property of the hidden graph is fixed so can be checked
 - \circ Its embedding in the larger graph makes it highly correlated
- 3. A backdoor that helps us check property
 - You know where the small problem is!
- 4. Means to implement on NISQ devices
 - IQP is easier to implement than BQP

Benchmarking Is The Noise Level Reasonable

Random Circuit

Cycle of Hadamard gates
For d clock cycles:
Apply CZs
If no CZ applied
If no random gate acted yet
Apply T
Else
Apply gate different from previous

•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•

Random Circuit

Cycle of Hadamard gates
For d clock cycles:
Apply CZs
If no CZ applied
If no random gate acted yet
Apply T
Else
Apply gate different from previous

Random Circuit

Cycle of Hadamard gates
 For d clock cycles:
 Apply CZs
 If no CZ applied
 If no random gate acted yet
 Apply T
 Else
 Apply gate different from previous

Advantages

• Designed for Google's Bristlecone device

• Also thought to be hard to reproduce on a classical computer

Sampling Problem

Sampling Problem

1110010101000101

Sampling Problem

Heavy Output Generation

Given as input a random quantum circuit C, generate output strings $x_1, ..., x_k$ at least $\frac{2}{3}$ fraction of which have greater than median probability in C's output distribution.

Can be verified in classical exponential time by calculating ideal probabilities

Quantum Volume

- Can a quantum device produce heavy outputs?
- For what size of circuits can the device produce heavy outputs?
- Roughly a measure of number of good qubits

Quantum Volume With Circuit Size

Advantages and Disadvantages

Advantages:

- Global property of device
- Measurable on NISQ devices
- Requires only few sample from the device

Disadvantages:

- Requires exponential resources on a classical computer
- Does not relate to more common complexity results
- While the task is thought to be hard, the grounds for this belief are not as stable

Cross Entropy Difference

Measure quality as the difference from uniform classical sampler

$$\Delta H\left(p_{A}
ight)=\sum_{j}\left(rac{1}{N}-p_{A}\left(x_{j}|U
ight)
ight)lograc{1}{p_{U}\left(x_{j}
ight)}$$

- Unity for ideal implementation
- Zero for uniform distribution

Achiever supremacy in range:

Cross-Entropy With Circuit Size

Conclusions
What Have We Learned

- Hypothesis tests are used to prove "quantumness"
- Benchmarking used to test noise levels

Open Problems

- Does not seem to be a reason to restrict to Random Circuits
 - Or maybe...
 - Random circuits are very flexible
- Can we use these hypothesis tests as a kind of *"meaningful"* verification
- What do hypothesis test teach us about limits of classical computers
 - Where will we see superiority
- Can we benchmark in polynomial time

Thanks!