How Do I Know If You Have A Quantum Computer Information Theoretically Secure Hypothesis Test for Temporally Unstructured Quantum Computing

Daniel Mills¹, Anna Pappa¹², Theodoros Kapourniotis¹³, and Elham Kashefi¹⁴

¹School of Informatics, The University of Edinburgh

²Department of Physics, University College London

 $^3\mbox{Department}$ of Physics, University of Warwick

⁴LIP6, CNRS, Pierre et Marie Curie University

Quantum Simulation Models Workshop, June 12, 2017

This Presentation

- Introduction
- 2 IQP in MBQC
- Blind IQP
- The Hypothesis Test

This Presentation

- Introduction
- 2 IQP in MBQC
- Blind IQP
- 4 The Hypothesis Test

A well designed *Hypothesis test* should allow:

A well designed *Hypothesis test* should allow:

 A Client to ensure a malicious Server is capable of quantum computations.

A well designed *Hypothesis test* should allow:

- A Client to ensure a malicious Server is capable of quantum computations.
- An engineer to check their machine is capable of quantum computations.

- The Server must complete a hard IQP computations
 - This means it is an IQP machine

- The Server must complete a hard IQP computations
 - This means it is an IQP machine
- The Client knows a secret allowing them to check the outcome
 - Must be sure that this does not add structure to the problem which the Server can use

- The Server must complete a hard IQP computations
 - This means it is an IQP machine
- The Client knows a secret allowing them to check the outcome
 - Must be sure that this does not add structure to the problem which the Server can use
- The Server hides the secret something

This Presentation

- Introduction
- 2 IQP in MBQC
- Blind IQP
- The Hypothesis Test

The Instantaneous Quantum Polytime Machine (SB)

Commuting gates:

In particular:

$$\exp\left\{i\theta\bigotimes_{i:q_i=1}X_i\right\}$$

where $q \in \{0, 1\}^{n_p}$, $\theta \in [0, 2\pi]$.

The Instantaneous quantum Polytime Machine (SB)

$$\exp\left\{i\theta\bigotimes_{i:q_i=1}X_i\right\}$$

An IQP program may consist of many of these gates, and so many different q. Hence we may represent the whole computation by, for example:

$$\mathbf{Q} = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

where, in this case, we have two gates defined by q = (101) and q = (010).

The input is $|0^{n_p}\rangle$ and the output is the resulting state measured in the computational basis.

IQP in MBQC

$$\mathbf{Q} = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

IQP in MBQC

$$\mathbf{Q} = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

IQP in MBQC

$$a_1^{\bullet}$$

$$\mathbf{Q} = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

This Presentation

- Introduction
- 2 IQP in MBQC
- Blind IQP
- The Hypothesis Test

IQP By Bridge and Break

Blind IQP Ideal Resource (V)

This Presentation

- Introduction
- 2 IQP in MBQC
- Blind IQP
- The Hypothesis Test

Bias of a random variable, $X \in \{0, 1\}^{n_p}$, in a direction $s \in \{0, 1\}^{n_p}$.

$$\mathbb{P}\left(X\cdot s^{T}=0\right)$$

Can be easily calculated, for some IQP computations, if one knows s.

Three conditions for a successful hypothesis test:

- The Server must complete a hard IQP computations
 - Computation bias is calculated for is hard
- The Client knows a secret allowing them to check the outcome
 - The Client knows the direction s
- The Server hides the secret something
 - Using blind IQP

Bibliography

(FK) - Joseph F. Fitzsimons and Elham Kashefi, *Unconditionally Verifiable Blind Quantum Computation*, arXiv preprint arXiv:1203.5217 (2012). (SB) - Dan Shepherd and Michael J. Bremner, *Temporally Unstructured Quantum Computation*, Proc. R. Soc. A 465, 1413–1439 (2009). (V) - Dunjko, Vedran, et al, *Composable security of delegated quantum computation*, International Conference on the Theory and Application of Cryptology and Information Security. Springer Berlin Heidelberg (2014).

Thanks to:

EPSRC Centre for Doctoral Training in Pervasive Parallelism

