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produce a representation or abstraction of observed phenomena or target variables that can be 
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The Task: Generative Modeling

“Generative Modeling is the use of Artificial Intelligence, statistics and probability in applications to 
produce a representation or abstraction of observed phenomena or target variables that can be 
calculated from observations.”

Untrained 
Generative 

Model

Trained 
Generative 

Model

Train the model using ‘samples’
Trained Model will (approximately) 
generate a ‘new’ cat image



Quantum Computers as Samplers

Classical - Neural Network or other

Quantum - Parameterised Quantum 
Circuit (PQC) arXiv:1906.07682

Generative 
Model

https://arxiv.org/abs/1906.07682


Quantum Computers as Samplers

● Quantum Inspired Training of Boltzmann Machines arXiv:1507.02642
● Quantum Boltzmann Machine Phys. Rev. X 8, 021050

○ Using annealing to prepare thermal state to sample from.
● Gate based Quantum Boltzmann Machine arXiv:1712.05304

○ Use QAOA to prepare approximate thermal state.
● Born Machine npj QI 5:45, Phys. Rev. A 98, 062324, ...

○ A ‘new’ model - generates statistics directly from Born rule of Quantum Mechanics

https://arxiv.org/abs/1507.02642
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021050
https://arxiv.org/abs/1712.05304
https://www.nature.com/articles/s41534-019-0157-8
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.062324
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Ising Born Machine

Trainable 
Parameters



Ising Born Machine

Recover IQP (Instantaneous 
Quantum Polytime) circuits.



Ising Born Machine

Recover shallowest depth (p=1) 
version of QAOA circuits.



The Born 
Supremacy: 
Quantum Advantage 
and Training of an 
Ising Born Machine



The Born 
Supremacy: 
Quantum Advantage 
and Training of an 
Ising Born Machine



Gradient Based Training

1 - Sample from model.



Gradient Based Training

2 - Evaluate loss & gradient

1 - Sample from model.



Gradient Based Training

3 - Update parameters by 
gradient based descent

2 - Evaluate loss & gradient

1 - Sample from model.



Choosing a Cost Function

Computing the loss function is a means of checking how well we are doing - comparing the data and the 
instantaneous model distributions.

How do we compare two probability distributions? - This is hard.
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Choosing a Cost Function

We need a loss function which is ideally:

● Easily computable (in terms of sample + computational complexity)
● Relatively ‘powerful’ (should be sensitive to differences in the distributions)



The Benchmark - Total Variation Distance

Why? It’s the notion that typically goes with quantum supremacy experiments:

● IQP: Phys. Rev. Lett. 117, 080501- Assume a conjecture about the hardness of computing the Ising 
partition function. If it is possible to classically sample from the output probability distribution of any 
IQP circuit C in polynomial time, up to an error of 1/384 in TV, then there is a BPP^NP algorithm to 
solve any problem in P^#P . Hence the Polynomial Hierarchy would collapse to its third level.

Model Data
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The Benchmark - Total Variation Distance

Why? It’s the notion that typically goes with quantum supremacy experiments:

● IQP: Phys. Rev. Lett. 117, 080501- Assume a conjecture about the hardness of computing the Ising 
partition function. If it is possible to classically sample from the output probability distribution of any 
IQP circuit C in polynomial time, up to an error of 1/384 in TV, then there is a BPP^NP algorithm to 
solve any problem in P^#P . Hence the Polynomial Hierarchy would collapse to its third level.

Model Data

Powerful
Hard to 
compute

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.080501


Previous Training - Maximum Mean 

Discrepancy
Liu & Wang: Phys. Rev. A 98, 062324, Gretton et.al.: JMLR 13 (2012) 723-773

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.062324
http://www.jmlr.org/papers/volume13/gretton12a/gretton12a.pdf


Previous Training - Maximum Mean 

Discrepancy

The MMD is very efficient to compute. It has quadratic sample complexity independent of the size of the 
underlying space arXiv:0901.2698 :

But, it lower bounds Total Variation: On Choosing and Bounding Probability Metrics

So, minimising MMD, does not necessarily do a good job of minimising TV. Can we minimise an efficient 
upper bound instead?

https://arxiv.org/abs/0901.2698
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2002.tb00178.x


Wasserstein & Optimal Transport?

The Wasserstein metric is related to Optimal Transport (Villani, 2009: Optimal transport, old and new. ) - a 
way to compare distributions by determining how to ‘transport’ one into the other

https://www.springer.com/gp/book/9783540710493
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Wasserstein & Optimal Transport?

The Wasserstein metric is related to Optimal Transport (Villani, 2009: Optimal transport, old and new. ) - a 
way to compare distributions by determining how to ‘transport’ one into the other

OT ‘cost’ - Distance between points 
in p, q. - Take to be Hamming 
distance between bin strings.

https://www.springer.com/gp/book/9783540710493


Computation & Power

OT is hard to compute though arXiv:0901.2698...

But it does upper bound TV: On Choosing and 
Bounding Probability Metrics

https://arxiv.org/abs/0901.2698
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Sinkhorn Divergence

Let’s add a regularisation term to the optimal transport distance… While we’re at it, let’s also add symmetric 
terms to remove bias... => Sinkhorn Divergence Entropy 2017, 19(2), 47, arXiv:1810.08278, arXiv:1706.00292

Regularised by the entropy term (KL divergence). Sinkhorn divergence interpolates between MMD and 
unregularised optimal transport (as a function of regulariser, 𝝐) - gradient has same form as MMD.

https://www.mdpi.com/1099-4300/19/2/47/htm
https://arxiv.org/abs/1810.08278
https://arxiv.org/abs/1706.00292


Sinkhorn Divergence

Can be efficient arXiv:1810.02733

(With prob. 1-δ)

Can also be powerful:

Un-regularised Optimal transport Regularised Optimal transport

https://arxiv.org/abs/1810.02733


Sinkhorn vs MMD
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Quantum Advantage of Training

“Quantum supremacy is the potential ability of quantum computing devices to solve problems that classical 
computers practically cannot.” John Preskill

The simplest example of such a problem is a sampling problem (or at least that we have evidence for)



Quantum Advantage of Training

Part 1 - Hardness of Simulation:

● Hardness of simulating the IBM (Ising Born machine) can be retained through training by enforcing 
parameter updates in a particular way.

BUT: This doesn’t say the model is able to 
actually outperform all classical algorithms in 
a learning task - Hardness of simulation does 
not imply usefulness!



Quantum Advantage of Training

Part 2 - Advantage in learning (??):

● Can we find examples which can be reached by quantum models, but cannot by any classical 
models?
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Supremacy

Supremacy null hypothesis:

The output of this computation was arrived at by a classical computer
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Generator

Generator

Collection of probability distributions

Samples from 

distribution in collection



Generator

An ‘Approximate Generator’, adapted from Kearns '94 - On the learnability of discrete distributions:

https://www.cis.upenn.edu/~mkearns/papers/dist.pdf


Learning

Learning algorithm

Generator for distribution D’ which is close to D



The Order of Definitions

Learning Supremacy

Quantum Learning 

Supremacy!!

Generator



Quantum Learning Supremacy



Conclusions

● We defined the Ising Born Machine.
● We used new gradient training methods - Sinkhorn Divergence - which is ‘stronger’ than the MMD, 

but efficiently computable.
● Quantum Advantage - By connecting to IQP and QAOA, the model is hard to sample from and can 

remain hard during training. We defined a framework for a provable advantage for generative 
modelling, potentially in the near term.
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