Generative Modeling Using Quantum Computers

Quantum Advantage and Training of the Ising Born Machine for Machine Learning

arXiv:1904.02214 - Brian Coyle, Daniel Mills, Vincent Danos, Elham Kashefi

Investigate tasks for which current and near term quantum devices can be useful and can even demonstrate the supremacy of quantum over classical computing.

Specifically

Develop tools to utilise quantum computers in generative modeling and explore the Ising Born Machine for this purpose.

Breakdown of the Mission

What is:

- a near term device?
- generative modeling?
- quantum supremacy?
- the Ising Born Machine?

Noisy Intermediate Scale Quantum Technologies

Restrictions on Applications

- Should require few qubits
- Ideally there would be intrinsic "fault tolerance"
- Guided by available architecture

Possible Applications

- Circuit classes that are simpler than universal
 - IQP, Boson Sampling, Random Circuits, ...
 - All shown to be better than classical but are simpler than a fully quantum device
- Simulate quantum mechanical systems
 - \circ A very natural application where noise is a property of the simulation
- Proof of principle
 - \circ If we do not target real word problems we can save qubits

Generative Modeling

Reproduce New From Old

A Black Box

And in Quantum Computing?

More Precisely

Quantum Learning Supremacy

Learning

Supremacy null hypothesis:

The output of this computation was arrived at by a classical computer

Generator

 $D\in\mathcal{D}$

Collection of probability distributions

Quantum Learning Supremacy

The Ising Born Machine

Ising Born Machine Definition

- Ising Use Ising circuits
- Born Outputs probabilities determined by Born rule

Generator

NISQ? Generative Model? Supremacy?

- NISQ Can be implemented in one time step saving on memory
- Supremacy The circuit class is shown to exhibit supremacy

 GEN_D

Results

Conclusion

- NISQ devices can be very exciting
- Learning using generative modeling is one possible application
- It may be possible to demonstrate quantum superiority using this problem